'다중선형회귀'에 해당되는 글 1건
- 2019.02.17 :: 다중선형회귀 example
> set.seed(2)
> u <- runif(10,0,11)
> v <- runif(10,11,20)
> w <- runif(10,1,30)
> y = 3+0.1*u+2*v -3*w + rnorm(10,0,0.1)
> dfrm = data.frame(y,u,v,w)
> dfrm
y u v w
1 -25.6647952 2.033705 15.97407 20.195064
2 -6.5562326 7.726114 13.15005 12.238937
3 -36.4858791 6.306590 17.84462 25.269786
4 12.4472764 1.848571 12.62738 5.364542
5 0.1638434 10.382233 14.64754 11.070895
6 -3.9124946 10.378225 18.68194 15.174424
7 26.6127780 1.420749 19.78759 5.328159
8 -3.9238295 9.167937 13.03243 11.354815
9 -53.0331805 5.148204 15.00328 28.916677
10 12.4387413 6.049821 11.67481 4.838788
> m <- lm(y~u+v+w)
> m
Call:
lm(formula = y ~ u + v + w)
Coefficients:
(Intercept) u v w
3.0417 0.1232 1.9890 -2.9978
> summary(m)
Call:
lm(formula = y ~ u + v + w)
Residuals:
Min 1Q Median 3Q Max
-0.188562 -0.058632 -0.002013 0.080024 0.143757
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.041653 0.264808 11.486 2.62e-05 ***
u 0.123173 0.012841 9.592 7.34e-05 ***
v 1.989017 0.016586 119.923 2.27e-11 ***
w -2.997816 0.005421 -552.981 2.36e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.1303 on 6 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.038e+05 on 3 and 6 DF, p-value: 1.564e-14
y = 3.0417 + 0.1232u + 1.9890 - 2.9978w
'R' 카테고리의 다른 글
step 함수를 이용한 전진선택법 적용 example (0) | 2019.02.17 |
---|---|
다중선형분석 example 2 (0) | 2019.02.17 |
단순회귀분석 (0) | 2019.02.12 |
이상값 검색 (0) | 2019.02.10 |
결측값처리 (0) | 2019.02.10 |