Python 2021. 5. 18. 09:46

https://plotly.com/python/pca-visualization/

 

PCA Visualization

Visualize Principle Component Analysis (PCA) of your high-dimensional data in Python with Plotly.

plotly.com

여기에 잘 나와있다. matplotlib를 이용하는것보다 훨씬 코드가 간단해진다.

 

2D

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

df = pd.read_csv("")
pca_df = StandardScaler().fit_transform(df)

pca = PCA(n_components=2)
principalComponents = pca.fit_transform(pca_df)
fig = px.scatter(principalComponents, x=0, y=1, color=df['label'])
fig.show()

3D

pca = PCA(n_components=3)
components = pca.fit_transform(df)

total_var = pca.explained_variance_ratio_.sum() * 100

fig = px.scatter_3d(
    components, x=0, y=1, z=2, color=df['label'],
    title=f'Total Explained Variance: {total_var:.2f}%',
    labels={'0': 'PC 1', '1': 'PC 2', '2': 'PC 3'}
)
fig.show()

'Python' 카테고리의 다른 글

dataframe 범위별 구간 만들기  (0) 2021.06.02
pandas read csv시 thousand 숫자형으로 읽기  (0) 2021.05.24
dataframe zero value column remove  (0) 2021.05.09
dataframe merge - reduce 이용  (0) 2021.04.22
seaborn boxplot 그리기  (0) 2021.04.13
posted by 초코렛과자
: